Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors.
نویسندگان
چکیده
Hedgehog and canonical Wnt/beta-catenin signaling are implicated in development of the osteoblast, the bone matrix-secreting cell of the vertebrate skeleton. We have used genetic approaches to dissect the roles of these pathways in specification of the osteoblast lineage. Previous studies indicate that Ihh signaling in the long bones is essential for initial specification of an osteoblast progenitor to a Runx2+ osteoblast precursor. We show here that this is a transient requirement, as removal of Hh responsiveness in later Runx2+, Osx1+ osteoblast precursors does not disrupt the formation of mature osteoblasts. By contrast, the removal of canonical Wnt signaling by conditional removal of the beta-catenin gene in early osteoblast progenitors or in Runx2+, Osx1+ osteoblast precursors results in a similar phenotype: osteoblasts fail to progress to a terminal osteocalcin+ fate and instead convert to a chondrocyte fate. By contrast, stabilization of beta-catenin signaling in Runx2+, Osx1+ osteoblast precursors leads to the premature differentiation of bone matrix secreting osteoblasts. These data demonstrate that commitment within the osteoblast lineage requires sequential, stage-specific, Ihh and canonical Wnt/beta-catenin signaling to promote osteogenic, and block chondrogenic, programs of cell fate specification.
منابع مشابه
Sequential roles of Hedgehog and Wnt signaling in osteoblast development.
Signals that govern development of the osteoblast lineage are not well understood. Indian hedgehog (Ihh), a member of the hedgehog (Hh) family of proteins, is essential for osteogenesis in the endochondral skeleton during embryogenesis. The canonical pathway of Wnt signaling has been implicated by studies of Lrp5, a co-receptor for Wnt proteins, in postnatal bone mass homeostasis. In the presen...
متن کاملDistinct Requirements for Cranial Ectoderm and Mesenchyme-Derived Wnts in Specification and Differentiation of Osteoblast and Dermal Progenitors
The cranial bones and dermis differentiate from mesenchyme beneath the surface ectoderm. Fate selection in cranial mesenchyme requires the canonical Wnt effector molecule β-catenin, but the relative contribution of Wnt ligand sources in this process remains unknown. Here we show Wnt ligands are expressed in cranial surface ectoderm and underlying supraorbital mesenchyme during dermal and osteob...
متن کاملGsα enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice.
The heterotrimeric G protein subunit Gsα stimulates cAMP-dependent signaling downstream of G protein-coupled receptors. In this study, we set out to determine the role of Gsα signaling in cells of the early osteoblast lineage in vivo by conditionally deleting Gsα from osterix-expressing cells. This led to severe osteoporosis with fractures at birth, a phenotype that was found to be the conseque...
متن کاملThe Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملThe Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 133 16 شماره
صفحات -
تاریخ انتشار 2006